Lactic acid modified uncommon earth-based nanomaterials for enhanced radiation remedy by disturbing the glycolysis | Journal of Nanobiotechnology

[ad_1]

  • Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Most cancers. 2015;15:409–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in most cancers remedy. Nat Rev Most cancers. 2009;9:351–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera FG, Bourhis J, Coukos G. Radiotherapy mixture alternatives leveraging immunity for the subsequent oncology apply. CA Most cancers J Clin. 2017;67:65–85.

    Article 
    PubMed 

    Google Scholar
     

  • Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, et al. Radiation publicity elicits a neutrophil-driven response in wholesome lung tissue that enhances metastatic colonization. Nat Most cancers. 2022;3:173–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune G, Cheng L, Chao Y, Yang Okay, Liu Z. Rising nanotechnology and superior supplies for most cancers radiation remedy. Adv Mater. 2017. https://doi.org/10.1002/adma.201700996.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Rising methods of nanomaterial-mediated tumor radiosensitization. Adv Mater. 2019;31: e1802244.

    Article 
    PubMed 

    Google Scholar
     

  • Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, Lv G, Zhang X, Wang H, Gong X, Chang J. Dimension-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano. 2016;10:2536–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Her S, Jaffray DA, Allen C. Gold nanoparticles for purposes in most cancers radiotherapy: Mechanisms and up to date developments. Adv Drug Deliv Rev. 2017;109:84–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: driver of most cancers initiation, development, and remedy resistance. Cell Stem Cell. 2019;24:65–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vriens Okay, Christen S, Parik S, Broekaert D, Yoshinaga Okay, Talebi A, Dehairs J, Escalona-Noguero C, Schmieder R, Cornfield T, et al. Proof for an alternate fatty acid desaturation pathway rising most cancers plasticity. Nature. 2019;566:403–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause M, Dubrovska A, Linge A, Baumann M. Most cancers stem cells: Radioresistance, prediction of radiotherapy end result and particular targets for mixed remedies. Adv Drug Deliv Rev. 2017;109:63–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stapleton S, Jaffray D, Milosevic M. Radiation results on the tumor microenvironment: Implications for nanomedicine supply. Adv Drug Deliv Rev. 2017;109:119–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, et al. Senescence-associated reprogramming promotes most cancers stemness. Nature. 2017;553:96–100.

    Article 
    PubMed 

    Google Scholar
     

  • Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking most cancers nanotheranostics. Nat Rev Mater. 2017. https://doi.org/10.1038/natrevmats.2017.24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li Z, Wang Z, Yu Y, Li D, Li B, Ding J. Nanomaterials for combinational radio-immuno oncotherapy. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.201910676.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Jiang Z, Zhang YS, Ding J, Chen X. Good transformable nanoparticles for enhanced tumor theranostics. Appl Phys Rev. 2021. https://doi.org/10.1063/5.0061530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Xu W, Zhang N, Yang C, Xu H, Wang Z, Li B, Ding J, Chen X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J Management Launch. 2021;332:1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue S, Li Y, Qiao Z, Tune W, Bi S. Rolling circle replication for biosensing, bioimaging, and biomedicine. Developments Biotechnol. 2021;39:1160–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng P, Ding J. Calcium ion nanomodulators for mitochondria-targeted multimodal most cancers remedy. Asian J Pharm Sci. 2022;17:1–3.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel illness remedy. Sci Adv. 2022;8:eabp9882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Guo J, Lin W, Fu Z, Ji X, Yu B, Lu M, Cui W, Deng L, Engle JW, et al. Open-shell nanosensitizers for glutathione responsive most cancers sonodynamic remedy. Adv Mater. 2022;34: e2110283.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng NN, Starkewolf Z, Davidson RA, Sharmah A, Lee C, Lien J, Guo T. Chemical enhancement by nanomaterials below X-ray irradiation. J Am Chem Soc. 2012;134:1950–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong Y, Zhang C, Gu Z, Du J, Guo Z, Dong X, Xie J, Zhang G, Liu X, Zhao Y. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano. 2017;11:7164–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune G, Chen Y, Liang C, Yi X, Liu J, Solar X, Shen S, Yang Okay, Liu Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z aspect and enzyme supply for enhancing radiotherapy. Adv Mater. 2016;28:7143–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune G, Liang C, Yi X, Zhao Q, Cheng L, Yang Okay, Liu Z. Perfluorocarbon-loaded hole Bi2Se3 nanoparticles for well timed provide of oxygen below near-infrared mild to boost the radiotherapy of most cancers. Adv Mater. 2016;28:2716–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Gao HB, Jiang XW, Zhao PR, Ni DL, Tang ZM, Liu YY, Zheng XP, Bu WB. Regulating water states by vacancies for most cancers remedy. Nano As we speak. 2021;37:7.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Lv B, Tang ZM, Zhang M, Ge WQ, Liu YY, He XH, Zhao KL, Zheng XP, He MY, Bu WB. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced x-ray-induced photodynamic remedy. Nano Lett. 2018;18:5768–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, He L, Ouyang J, Chen Q, Liu C, Tao W, Chen T. Triangle-shaped tellurium nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter. 2020;3:1725–53.

    Article 

    Google Scholar
     

  • Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, Wu Y, Jiang X, Gao H, Zheng X, Bu W. Full-process radiosensitization based mostly on nanoscale metal-organic frameworks. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b07898.

    Article 
    PubMed 

    Google Scholar
     

  • Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis utilizing hyperpolarized 13C-labeled glucose. Nat Med. 2014;20:93–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaku Okay, Okabe Okay, Hikosaka Okay, Nakagawa T. NAD metabolism in most cancers therapeutics. Entrance Oncol. 2018;8:622.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Butler EB, Tan M. Concentrating on mobile metabolism to enhance most cancers therapeutics. Cell Dying Dis. 2013;4: e532.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birsoy Okay, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, et al. MCT1-mediated transport of a poisonous molecule is an efficient technique for focusing on glycolytic tumors. Nat Genet. 2013;45:104–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen S, Zhu D, Huang P. Concentrating on most cancers cell mitochondria as a therapeutic method. Future Med Chem. 2013;5:53–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Li Y, Wang Okay, Chen Y, Shi M, Zhang X, Pan W, Li N, Tang B. GSH-Responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for most cancers remedy. Nano Lett. 2021;21:7862–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson JE. Isozymes of mammalian hexokinase: construction, subcellular localization and metabolic perform. J Exp Biol. 2003;206:2049–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key participant in most cancers. Most cancers Res. 2011;71:6921–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W, Corridor MA, Amelio AL, Mishra JK, Li F, et al. Blocking lactate export by inhibiting the Myc goal MCT1 Disables glycolysis and glutathione synthesis. Most cancers Res. 2014;74:908–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin D, Robay D, Hindupur SK, Pohlmann J, Colombi M, El-Shemerly MY, Maira SM, Moroni C, Lane HA, Corridor MN. Twin inhibition of the lactate transporters MCT1 and MCT4 is artificial deadly with metformin on account of NAD+ depletion in most cancers cells. Cell Rep. 2018;25(3047–3058): e3044.


    Google Scholar
     

  • Pearson RG. Exhausting and tender acids and bases, HSAB, half 1: elementary rules. J Chem Educ. 1968. https://doi.org/10.1021/ed045p581.

    Article 

    Google Scholar
     

  • Pearson RG. Exhausting and tender acids and bases, HSAB, half II: underlying theories. J Chem Educ. 1968. https://doi.org/10.1021/ed045p643.

    Article 

    Google Scholar
     

  • Ni DL, Zhang JW, Bu WB, Xing HY, Han F, Xiao QF, Yao ZW, Chen F, He QJ, Liu JN, et al. Twin-targeting upconversion nanoprobes throughout the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano. 2014;8:1231–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni D, Bu W, Zhang S, Zheng X, Li M, Xing H, Xiao Q, Liu Y, Hua Y, Zhou L, et al. Single Ho3+-doped upconversion nanoparticles for high-performanceT2-weighted mind tumor analysis and MR/UCL/CT multimodal imaging. Adv Funct Mater. 2014;24:6613–20.

    Article 
    CAS 

    Google Scholar
     

  • Stuart BH: Infrared spectroscopy: fundamentals and purposes. 2004. https://doi.org/10.1002/0470011149.

  • Hay N. Reprogramming glucose metabolism in most cancers: can or not it’s exploited for most cancers remedy? Nat Rev Most cancers. 2016;16:635–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and most cancers biology. Cell. 2017;168:657–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Leave a Reply