Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
[ad_1]
Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Most cancers. 2015;15:409–25.
Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in most cancers remedy. Nat Rev Most cancers. 2009;9:351–60.
Herrera FG, Bourhis J, Coukos G. Radiotherapy mixture alternatives leveraging immunity for the subsequent oncology apply. CA Most cancers J Clin. 2017;67:65–85.
Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, et al. Radiation publicity elicits a neutrophil-driven response in wholesome lung tissue that enhances metastatic colonization. Nat Most cancers. 2022;3:173–87.
Tune G, Cheng L, Chao Y, Yang Okay, Liu Z. Rising nanotechnology and superior supplies for most cancers radiation remedy. Adv Mater. 2017. https://doi.org/10.1002/adma.201700996.
Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Rising methods of nanomaterial-mediated tumor radiosensitization. Adv Mater. 2019;31: e1802244.
Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, Lv G, Zhang X, Wang H, Gong X, Chang J. Dimension-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano. 2016;10:2536–48.
Her S, Jaffray DA, Allen C. Gold nanoparticles for purposes in most cancers radiotherapy: Mechanisms and up to date developments. Adv Drug Deliv Rev. 2017;109:84–101.
Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: driver of most cancers initiation, development, and remedy resistance. Cell Stem Cell. 2019;24:65–78.
Vriens Okay, Christen S, Parik S, Broekaert D, Yoshinaga Okay, Talebi A, Dehairs J, Escalona-Noguero C, Schmieder R, Cornfield T, et al. Proof for an alternate fatty acid desaturation pathway rising most cancers plasticity. Nature. 2019;566:403–6.
Krause M, Dubrovska A, Linge A, Baumann M. Most cancers stem cells: Radioresistance, prediction of radiotherapy end result and particular targets for mixed remedies. Adv Drug Deliv Rev. 2017;109:63–73.
Stapleton S, Jaffray D, Milosevic M. Radiation results on the tumor microenvironment: Implications for nanomedicine supply. Adv Drug Deliv Rev. 2017;109:119–30.
Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, et al. Senescence-associated reprogramming promotes most cancers stemness. Nature. 2017;553:96–100.
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking most cancers nanotheranostics. Nat Rev Mater. 2017. https://doi.org/10.1038/natrevmats.2017.24.
Wang J, Li Z, Wang Z, Yu Y, Li D, Li B, Ding J. Nanomaterials for combinational radio-immuno oncotherapy. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.201910676.
Chen J, Jiang Z, Zhang YS, Ding J, Chen X. Good transformable nanoparticles for enhanced tumor theranostics. Appl Phys Rev. 2021. https://doi.org/10.1063/5.0061530.
Wang J, Xu W, Zhang N, Yang C, Xu H, Wang Z, Li B, Ding J, Chen X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J Management Launch. 2021;332:1–9.
Yue S, Li Y, Qiao Z, Tune W, Bi S. Rolling circle replication for biosensing, bioimaging, and biomedicine. Developments Biotechnol. 2021;39:1160–72.
Zheng P, Ding J. Calcium ion nanomodulators for mitochondria-targeted multimodal most cancers remedy. Asian J Pharm Sci. 2022;17:1–3.
Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel illness remedy. Sci Adv. 2022;8:eabp9882.
Wang H, Guo J, Lin W, Fu Z, Ji X, Yu B, Lu M, Cui W, Deng L, Engle JW, et al. Open-shell nanosensitizers for glutathione responsive most cancers sonodynamic remedy. Adv Mater. 2022;34: e2110283.
Cheng NN, Starkewolf Z, Davidson RA, Sharmah A, Lee C, Lien J, Guo T. Chemical enhancement by nanomaterials below X-ray irradiation. J Am Chem Soc. 2012;134:1950–3.
Yong Y, Zhang C, Gu Z, Du J, Guo Z, Dong X, Xie J, Zhang G, Liu X, Zhao Y. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano. 2017;11:7164–76.
Tune G, Chen Y, Liang C, Yi X, Liu J, Solar X, Shen S, Yang Okay, Liu Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z aspect and enzyme supply for enhancing radiotherapy. Adv Mater. 2016;28:7143–8.
Tune G, Liang C, Yi X, Zhao Q, Cheng L, Yang Okay, Liu Z. Perfluorocarbon-loaded hole Bi2Se3 nanoparticles for well timed provide of oxygen below near-infrared mild to boost the radiotherapy of most cancers. Adv Mater. 2016;28:2716–23.
Wang H, Gao HB, Jiang XW, Zhao PR, Ni DL, Tang ZM, Liu YY, Zheng XP, Bu WB. Regulating water states by vacancies for most cancers remedy. Nano As we speak. 2021;37:7.
Wang H, Lv B, Tang ZM, Zhang M, Ge WQ, Liu YY, He XH, Zhao KL, Zheng XP, He MY, Bu WB. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced x-ray-induced photodynamic remedy. Nano Lett. 2018;18:5768–74.
Huang W, He L, Ouyang J, Chen Q, Liu C, Tao W, Chen T. Triangle-shaped tellurium nanostars potentiate radiotherapy by boosting checkpoint blockade immunotherapy. Matter. 2020;3:1725–53.
Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, Wu Y, Jiang X, Gao H, Zheng X, Bu W. Full-process radiosensitization based mostly on nanoscale metal-organic frameworks. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b07898.
Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis utilizing hyperpolarized 13C-labeled glucose. Nat Med. 2014;20:93–7.
Yaku Okay, Okabe Okay, Hikosaka Okay, Nakagawa T. NAD metabolism in most cancers therapeutics. Entrance Oncol. 2018;8:622.
Zhao Y, Butler EB, Tan M. Concentrating on mobile metabolism to enhance most cancers therapeutics. Cell Dying Dis. 2013;4: e532.
Birsoy Okay, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, et al. MCT1-mediated transport of a poisonous molecule is an efficient technique for focusing on glycolytic tumors. Nat Genet. 2013;45:104–8.
Wen S, Zhu D, Huang P. Concentrating on most cancers cell mitochondria as a therapeutic method. Future Med Chem. 2013;5:53–67.
Liu X, Li Y, Wang Okay, Chen Y, Shi M, Zhang X, Pan W, Li N, Tang B. GSH-Responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for most cancers remedy. Nano Lett. 2021;21:7862–9.
Wilson JE. Isozymes of mammalian hexokinase: construction, subcellular localization and metabolic perform. J Exp Biol. 2003;206:2049–57.
Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key participant in most cancers. Most cancers Res. 2011;71:6921–5.
Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W, Corridor MA, Amelio AL, Mishra JK, Li F, et al. Blocking lactate export by inhibiting the Myc goal MCT1 Disables glycolysis and glutathione synthesis. Most cancers Res. 2014;74:908–20.
Benjamin D, Robay D, Hindupur SK, Pohlmann J, Colombi M, El-Shemerly MY, Maira SM, Moroni C, Lane HA, Corridor MN. Twin inhibition of the lactate transporters MCT1 and MCT4 is artificial deadly with metformin on account of NAD+ depletion in most cancers cells. Cell Rep. 2018;25(3047–3058): e3044.
Pearson RG. Exhausting and tender acids and bases, HSAB, half 1: elementary rules. J Chem Educ. 1968. https://doi.org/10.1021/ed045p581.
Pearson RG. Exhausting and tender acids and bases, HSAB, half II: underlying theories. J Chem Educ. 1968. https://doi.org/10.1021/ed045p643.
Ni DL, Zhang JW, Bu WB, Xing HY, Han F, Xiao QF, Yao ZW, Chen F, He QJ, Liu JN, et al. Twin-targeting upconversion nanoprobes throughout the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano. 2014;8:1231–42.
Ni D, Bu W, Zhang S, Zheng X, Li M, Xing H, Xiao Q, Liu Y, Hua Y, Zhou L, et al. Single Ho3+-doped upconversion nanoparticles for high-performanceT2-weighted mind tumor analysis and MR/UCL/CT multimodal imaging. Adv Funct Mater. 2014;24:6613–20.
Stuart BH: Infrared spectroscopy: fundamentals and purposes. 2004. https://doi.org/10.1002/0470011149.
Hay N. Reprogramming glucose metabolism in most cancers: can or not it’s exploited for most cancers remedy? Nat Rev Most cancers. 2016;16:635–49.
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and most cancers biology. Cell. 2017;168:657–69.
[ad_2]