Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
[ad_1]
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver ailments on this planet. J Hepatol. 2019;70(1):151–71.
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.
Singh L, Indermun S, Govender M, Kumar P, du Toit LC, Choonara YE, et al. Drug supply methods for antivirals towards hepatitis B virus. Viruses. 2018;10(5):267.
Geissler EK, Schlitt HJ. Immunosuppression for liver transplantation. Intestine. 2009;58(3):452–63.
Lohitesh Ok, Chowdhury R, Mukherjee S. Resistance a significant hindrance to chemotherapy in hepatocellular carcinoma: an perception. Most cancers Cell Int. 2018;18:44.
Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: a evaluate. JAMA. 2020;323(12):1175–83.
Bataller R, Brenner DA. Liver fibrosis. J Clin Make investments. 2005;115(2):209–18.
Reddy LH, Couvreur P. Nanotechnology for remedy and imaging of liver ailments. J Hepatol. 2011;55(6):1461–6.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20(2):101–24.
Gregoriadis G, Wills EJ, Swain CP, Tavill AS. Drug-carrier potential of liposomes in most cancers chemotherapy. Lancet. 1974;1(7870):1313–6.
Li L, Wang H, Ong ZY, Xu Ok, Ee PLR, Zheng S, et al. Polymer- and lipid-based nanoparticle therapeutics for the remedy of liver ailments. Nano Immediately. 2010;5(4):296–312.
Bottger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle applied sciences for liver concentrating on. Adv Drug Deliv Rev. 2020;154–155:79–101.
Couvreur P, Vauthier C. Nanotechnology: clever design to deal with advanced illness. Pharm Res. 2006;23(7):1417–50.
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, et al. Conventional chinese language medication mixed with hepatic focused drug supply programs: a brand new technique for the remedy of liver ailments. Biomed Pharmacother. 2019;117:109128.
Siepmann J, Faham A, Clas SD, Boyd BJ, Jannin V, Bernkop-Schnürch A, et al. Lipids and polymers in pharmaceutical expertise: lifelong companions. Int J Pharm. 2019;558:128–42.
Zhu X, Anquillare ELB, Farokhzad OC, Shi J. Chapter 22-polymer- and protein-based nanotechnologies for most cancers theranostics. In: Chen X, Wong S, editors. Most cancers theranostics. Oxford: Educational Press; 2014. p. 419–36.
Kamaly N, Xiao ZY, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Focused polymeric therapeutic nanoparticles: design, improvement and scientific translation. Chem Soc Rev. 2012;41(7):2971–3010.
Farokhzad OC, Langer R. Nanomedicine: growing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.
Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug concentrating on: part I analysis of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.
Zhou Q, Solar X, Zeng L, Liu J, Zhang Z. A randomized multicenter part II scientific trial of mitoxantrone-loaded nanoparticles within the remedy of 108 sufferers with unresected hepatocellular carcinoma. Nanomedicine. 2009;5(4):419–23.
Jazayeri-Tehrani SA, Rezayat SM, Mansouri S, Qorbani M, Alavian SM, Daneshi-Maskooni M, et al. Nano-curcumin improves glucose indices, lipids, irritation, and Nesfatin in obese and overweight sufferers with non-alcoholic fatty liver illness (NAFLD): a double-blind randomized placebo-controlled scientific trial. Nutr Metab. 2019;16:8.
Abdel-Misih SRZ, Bloomston M. Liver anatomy. Surg Clin N Am. 2010;90(4):643–53.
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell kind for innate immunity. Cell Mol Immunol. 2016;13(3):301–15.
Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):54–62.
Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol. 2015;5(4):1751–74.
Braet F, Wisse E. Structural and purposeful facets of liver sinusoidal endothelial cell fenestrae: a evaluate. Comp Hepatol. 2002;1(1):1.
Tamura R, Uemoto S, Tabata Y. Augmented liver concentrating on of exosomes by floor modification with cationized pullulan. Acta Biomater. 2017;57:274–84.
Kim SI, Shin D, Choi TH, Lee JC, Cheon G-J, Kim Ok-Y, et al. Systemic and particular supply of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther. 2007;15(6):1145–52.
Yang T, Lan Y, Cao M, Ma X, Cao A, Solar Y, et al. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as mixture remedy remedy for liver most cancers. Colloids Surf B Biointerfaces. 2019;175:106–15.
McCuskey RS. The hepatic microvascular system in well being and its response to toxicants. Anat Rec (Hoboken). 2008;291(6):661–71.
Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147-51.
Lachman N, Pawlina W. The liver and biliary equipment: primary structural anatomy and variations. In: Nicholas J, Talley MDP, Keith D. Lindor MD, Hugo E. Vargas MD, editors. Sensible gastroenterology and hepatology: liver and biliary illness. Oxford: Blackwell Publishing Ltd; 2010. pp. 1–16.
Walkey CD, Chan WC. Understanding and controlling the interplay of nanomaterials with proteins in a physiological surroundings. Chem Soc Rev. 2012;41(7):2780–99.
Cheng SH, Li FC, Souris JS, Yang CS, Tseng FG, Lee HS, et al. Visualizing dynamics of sub-hepatic distribution of nanoparticles utilizing intravital multiphoton fluorescence microscopy. ACS Nano. 2012;6(5):4122–31.
Ogawara Ok, Yoshida M, Higaki Ok, Kimura T, Shiraishi Ok, Nishikawa M, et al. Hepatic uptake of polystyrene microspheres in rats: impact of particle dimension on intrahepatic distribution. J Management Launch. 1999;59(1):15–22.
Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of enormous liposomes. FEBS Lett. 1999;448(1):193–6.
Champion JA, Mitragotri S. Form induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244–9.
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: mobile uptake and hepatobiliary elimination. J Management Launch. 2016;240:332–48.
Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, et al. Focused nanoparticles for most cancers remedy. Nano Immediately. 2007;2(3):14–21.
Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46(12 Pt 1):6387–92.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a evaluate. J Management Launch. 2000;65(1–2):271–84.
Bertrand N, Wu J, Xu XY, Kamaly N, Farokhzad OC. Most cancers nanotechnology: the affect of passive and energetic concentrating on within the period of recent most cancers biology. Adv Drug Deliv Rev. 2014;66:2–25.
Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular dimension dependence and cutoff dimension. Most cancers Res. 1995;55(17):3752–6.
Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, et al. Polymer-mediated supply of siRNAs to Hepatocellular Carcinoma: variables affecting specificity and effectiveness. Molecules. 2018;23(4):777.
Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, et al. Nanotechnology for hepatocellular carcinoma: from surveillance, prognosis to administration. Small. 2021;17(6):e2005236.
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: their function in hepatocellular carcinoma. Crit Rev Oncol Hematol. 2020;151:102968.
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug supply: the necessity for precision in reporting particle dimension parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.
Byrne JD, Betancourt T, Brannon-Peppas L. Energetic concentrating on schemes for nanoparticle programs in most cancers therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.
Danhier F, Feron O, Preat V. To take advantage of the tumor microenvironment: passive and energetic tumor concentrating on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148(2):135–46.
Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, et al. Collaborative meeting of doxorubicin and galactosyl diblock glycopolymers for focused drug supply of hepatocellular carcinoma. Biomater Sci. 2020;8(1):189–200.
Zhao J, Yan C, Chen Z, Liu J, Track H, Wang W, et al. Twin-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug supply. J Colloid Interface Sci. 2019;540:66–77.
Kuruvilla SP, Tiruchinapally G, Kaushal N, ElSayed MEH. Impact of N-acetylgalactosamine ligand valency on concentrating on dendrimers to hepatic most cancers cells. Int J Pharm. 2018;545(1–2):27–36.
Detampel P, Witzigmann D, Krähenbühl S, Huwyler J. Hepatocyte concentrating on utilizing pegylated asialofetuin-conjugated liposomes. J Drug Goal. 2014;22(3):232–41.
Zhang Q, Zhang X, Chen T, Wang X, Fu Y, Jin Y, et al. A secure and environment friendly hepatocyte-selective service system based mostly on myristoylated preS1/21–47 area of hepatitis B virus. Nanoscale. 2015;7(20):9298–310.
Hefnawy A, Khalil IH, Arafa Ok, Emara M, El-Sherbiny IM. Twin-ligand functionalized core-shell chitosan-based nanocarrier for hepatocellular carcinoma-targeted drug supply. Int J Nanomed. 2020;15:821–37.
Shen Z, Li B, Liu Y, Zheng G, Guo Y, Zhao R, et al. A self-assembly nanodrug supply system based mostly on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC concentrating on remedy. Nanomedicine. 2018;14(2):227–36.
Wang X, Qi Y, Liu L, Ganbold T, Baigude H, Han J. Preparation and cell actions of lactosylated curdlan-triornithine nanoparticles for enhanced DNA/siRNA supply in hepatoma cells. Carbohydr Polym. 2019;225:115252.
Qi XR, Yan WW, Shi J. Hepatocytes concentrating on of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol. World J Gastroenterol. 2005;11(32):4947–52.
Zheng Y, Shi S, Liu Y, Zhao Y, Solar Y. Focused pharmacokinetics of polymeric micelles modified with glycyrrhetinic acid and hydrazone bond in H22 tumor-bearing mice. J Biomater Appl. 2019;34(1):141–51.
Li ZP, Tian GX, Jiang H, Pan RY, Lian B, Wang M, et al. Liver-targeting and pH-sensitive sulfated hyaluronic acid blended micelles for hepatoma remedy. Int J Nanomed. 2019;14:9437–52.
Longmuir KJ, Haynes SM, Baratta JL, Kasabwalla N, Robertson RT. Liposomal supply of doxorubicin to hepatocytes in vivo by concentrating on heparan sulfate. Int J Pharm. 2009;382(1):222–33.
Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.
Fielding CJ. Lipoprotein receptors, plasma ldl cholesterol metabolism, and the regulation of mobile free ldl cholesterol focus. FASEB J. 1992;6(13):3162–8.
Jędrzak A, Grześkowiak BF, Golba Ok, Coy E, Synoradzki Ok, Jurga S, et al. Magnetite nanoparticles and spheres for chemo- and photothermal remedy of hepatocellular carcinoma in vitro. Int J Nanomed. 2020;15:7923–36.
Koirala N, Das D, Fayazzadeh E, Sen S, McClain A, Puskas JE, et al. Folic acid conjugated polymeric drug supply automobile for focused most cancers detection in hepatocellular carcinoma. J Biomed Mater Res A. 2019;107(11):2522–35.
Gao D-Y, Lin T-T, Sung Y-C, Liu YC, Chiang W-H, Chang C-C, et al. CXCR4-targeted lipid-coated PLGA nanoparticles ship sorafenib and overcome acquired drug resistance in liver most cancers. Biomaterials. 2015;67:194–203.
Kumari P, Rompicharla SVK, Muddineti OS, Ghosh B, Biswas S. Transferrin-anchored poly(lactide) based mostly micelles to enhance anticancer exercise of curcumin in hepatic and cervical most cancers cell monolayers and 3D spheroids. Int J Biol Macromol. 2018;116:1196–213.
Yang H, Miao Y, Chen L, Li Z, Yang R, Xu X, et al. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-l-lysine)-grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Int J Biol Macromol. 2020;148:483–92.
Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida Ok, Harashima H. Ligand density on the floor of a nanoparticle and totally different uptake mechanism: two vital components for profitable siRNA supply to liver endothelial cells. Int J Pharm. 2014;475(1):227–37.
Kamps JA, Morselt HW, Swart PJ, Meijer DK, Scherphof GL. Huge concentrating on of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci USA. 1997;94(21):11681–5.
Van Berkel TJ, De Rijke YB, Kruijt JK. Completely different destiny in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by numerous scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem. 1991;266(4):2282–9.
Toriyabe N, Hayashi Y, Hyodo M, Harashima H. Synthesis and analysis of stearylated hyaluronic acid for the energetic supply of liposomes to liver endothelial cells. Biol Pharm Bull. 2011;34(7):1084–9.
Praaning-van Dalen DP, de Leeuw AM, Brouwer A, Knook DL. Rat liver endothelial cells have a higher capability than Kupffer cells to endocytose N-acetylglucosamine- and mannose-terminated glycoproteins. Hepatology. 1987;7(4):672–9.
Sano A, Taylor ME, Leaning MS, Summerfield JA. Uptake and processing of glycoproteins by remoted rat hepatic endothelial and kupffer cells. J Hepatol. 1990;10(2):211–6.
Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, et al. The mannose receptor on murine liver sinusoidal endothelial cells is the primary denatured collagen clearance receptor. Hepatology. 2007;45(6):1454–61.
Fridman WH. Fc receptors and immunoglobulin binding components. FASEB J. 1991;5(12):2684–90.
Zhu J, Qin F, Ji Z, Fei W, Tan Z, Hu Y, et al. Mannose-modified PLGA nanoparticles for sustained and focused supply in hepatitis B virus immunoprophylaxis. AAPS PharmSciTech. 2019;21(1):13.
Lai C, Li C, Luo X, Liu M, Liu X, Hu L, et al. Use of dual-ligand modification in Kupffer cell-targeted liposomes to look at the contribution of Kupffer cells to accelerated blood clearance phenomenon. Mol Pharm. 2018;15(7):2548–58.
Higuchi Y, Kawakami S, Yamashita F, Hashida M. The potential function of fucosylated cationic liposome/NFκB decoy complexes within the remedy of cytokine-related liver illness. Biomaterials. 2007;28(3):532–9.
Shimada Ok, Kamps JAAM, Regts J, Ikeda Ok, Shiozawa T, Hirota S, et al. Biodistribution of liposomes containing artificial galactose-terminated diacylglyceryl-poly(ethyleneglycol)s. Biochim Biophys Acta (BBA) Biomembr. 1997;1326(2):329–41.
Rafique A, Etzerodt A, Graversen JH, Moestrup SK, Dagnæs-Hansen F, Møller HJ. Focused lipid nanoparticle supply of calcitriol to human monocyte-derived macrophages in vitro and in vivo: investigation of the anti-inflammatory results of calcitriol. Int J Nanomed. 2019;14:2829–46.
Koning GA, Morselt HW, Gorter A, Allen TM, Zalipsky S, Scherphof GL, et al. Interplay of in a different way designed immunoliposomes with colon most cancers cells and kupffer cells. An in vitro comparability. Pharm Res. 2003;20(8):1249–57.
Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. 2006;124(5):915–27.
Dutta R, Kumar V, Peng Y, Evande RE, Grem JL, Mahato RI. Pharmacokinetics and biodistribution of GDC-0449 loaded micelles in regular and liver fibrotic mice. Pharm Res. 2017;34(3):564–78.
Yildirim T, Matthäus C, Press AT, Schubert S, Bauer M, Popp J, et al. Uptake of retinoic acid-modified PMMA nanoparticles in LX-2 and liver tissue by Raman Imaging and Intravital Microscopy. Macromol Biosci. 2017;17(10):1700064.
Qiao JB, Fan QQ, Xing L, Cui PF, He YJ, Zhu JC, et al. Vitamin A-decorated biocompatible micelles for chemogene remedy of liver fibrosis. J Management Launch. 2018;283:113–25.
El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby TI, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus typical imatinib: a novel technique with potent efficacy in experimental liver fibrosis. J Management Launch. 2017;266:226–37.
Ji D, Wang Q, Zhao Q, Tong H, Yu M, Wang M, et al. Co-delivery of miR-29b and germacrone based mostly on cyclic RGD-modified nanoparticles for liver fibrosis remedy. J Nanobiotechnol. 2020;18(1):86.
Yang J, Hou Y, Ji G, Track Z, Liu Y, Dai G, et al. Focused supply of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. Eur J Pharm Sci. 2014;52:180–90.
van Dijk F, Teekamp N, Beljaars L, Put up E, Zuidema J, Steendam R, et al. Pharmacokinetics of a sustained launch formulation of PDGFβ-receptor directed service proteins to focus on the fibrotic liver. J Management Launch. 2018;269:258–65.
van Dijk F, Teekamp N, Put up E, Schuppan D, Kim YO, Zuidema J, et al. The antifibrotic potential of a sustained launch formulation of a PDGFβ-receptor focused rho kinase inhibitor. J Management Launch. 2019;296:250–7.
Adrian JE, Poelstra Ok, Scherphof GL, Molema G, Meijer DK, Reker-Smit C, et al. Interplay of focused liposomes with main cultured hepatic stellate cells: involvement of a number of receptor programs. J Hepatol. 2006;44(3):560–7.
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and illness. Nat Rev Immunol. 2017;17(5):306–21.
Hammoutene A, Rautou PE. Position of liver sinusoidal endothelial cells in non-alcoholic fatty liver illness. J Hepatol. 2019;70(6):1278–91.
Yin C, Evason KJ, Asahina Ok, Stainier DY. Hepatic stellate cells in liver improvement, regeneration, and most cancers. J Clin Make investments. 2013;123(5):1902–10.
Gissen P, Arias IM. Structural and purposeful hepatocyte polarity and liver illness. J Hepatol. 2015;63(4):1023–37.
Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park Ok, Ramasamy MK, et al. N,N,N-Trimethyl chitosan nanoparticles for managed intranasal supply of HBV floor antigen. Carbohydr Polym. 2012;89(4):1289–97.
Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA supply and HBV gene-silencing. Int J Pharm. 2011;415(1–2):259–66.
Xue M, Hu S, Lu Y, Zhang Y, Jiang X, An S, et al. Growth of chitosan nanoparticles as drug supply system for a prototype capsid inhibitor. Int J Pharm. 2015;495(2):771–82.
Miao J, Yang XQ, Gao Z, Li Q, Meng TT, Wu JY, et al. Redox-responsive chitosan oligosaccharide-SS-Octadecylamine polymeric service for environment friendly anti-hepatitis B virus gene remedy. Carbohydr Polym. 2019;212:215–21.
Wang H, Han Q, Zhao H, Xu D, Zhang J. Single dose HBsAg CS-γ-PGA nanogels induce potent protecting immune responses towards HBV an infection. Eur J Pharm Biopharm. 2018;124:82–8.
Zhao R, Zhu M, Zhou S, Feng W, Chen H. Rapamycin-loaded mPEG-PLGA nanoparticles ameliorate hepatic steatosis and liver damage in non-alcoholic fatty liver illness. Entrance Chem. 2020;8:407.
Zai W, Chen W, Wu Z, Jin X, Fan J, Zhang X, et al. Focused interleukin-22 gene supply within the liver by Polymetformin and Penetratin-Based mostly hybrid nanoparticles to deal with nonalcoholic fatty liver illness. ACS Appl Mater Interfaces. 2019;11(5):4842–57.
Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, et al. The hepatic-targeted, resveratrol loaded nanoparticles for aid of excessive fats diet-induced nonalcoholic fatty liver illness. J Management Launch. 2019;307:139–49.
Lee S, Han D, Kang HG, Jeong SJ, Jo JE, Shin J, et al. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver illness by restoring autophagic clearance. Biomaterials. 2019;197:1–11.
Wan SQ, Zhang L, Quan YY, Wei Ok. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver illness remedy. R Soc Open Sci. 2018;5(11):181457.
Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages utilizing PLGA nanoparticles for the remedy of non-alcoholic steatohepatitis. J Management Launch. 2018;288:227–38.
He S, Guo W, Deng F, Chen Ok, Jiang Y, Dong M, et al. Focused supply of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the remedy of NAFLD. Artif Cells Nanomed Biotechnol. 2018;46(sup2):217–28.
Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane nanoparticle-loaded fenofibrate exerts inhibitory results on nonalcoholic fatty liver illness in mice. Mol Pharm. 2018;15(10):4550–7.
Shafie F, Nabavizadeh F, Shafie Ardestani M, Panahi M, Adeli S, Samandari H, et al. Sorafenib-loaded PAMAM dendrimer attenuates liver fibrosis and its problems in bile-duct-ligated rats. Can J Physiol Pharmacol. 2019;97(8):691–8.
Krithika R, Vhora I, Verma RJ. Preparation, toxicity evaluation and in vivo protecting impact of phyllanthin-loaded PLGA nanoparticles towards CCl4-induced hepatic fibrosis. J Drug Deliv Sci Technol. 2019;51:364–71.
Hassan R, Tammam SN, Safy SE, Abdel-Halim M, Asimakopoulou A, Weiskirchen R, et al. Prevention of hepatic stellate cell activation utilizing JQ1- and atorvastatin-loaded chitosan nanoparticles as a promising method in remedy of liver fibrosis. Eur J Pharm Biopharm. 2019;134:96–106.
El-Safy S, Tammam SN, Abdel-Halim M, Ali ME, Youshia J, Shetab Boushehri MA, et al. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: the impact of chitosan intrinsic collagen binding on the success of concentrating on. Eur J Pharm Biopharm. 2020;148:54–66.
Chang CC, Yang Y, Gao DY, Cheng HT, Hoang B, Chao PH, et al. Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl(4)-induced hepatic fibrosis in mice. J Drug Goal. 2018;26(5–6):516–24.
Younis N, Shaheen MA, Abdallah MH. Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the power of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother. 2016;81:93–103.
Thomas RG, Moon MJ, Kim JH, Lee JH, Jeong YY. Effectiveness of losartan-loaded hyaluronic acid (HA) Micelles for the discount of superior hepatic fibrosis in C3H/HeN mice mannequin. PLoS ONE. 2015;10(12):e0145512.
Safer AM, Hanafy NA, Bharali DJ, Cui H, Mousa SA. Impact of inexperienced tea extract encapsulated into chitosan nanoparticles on hepatic fibrosis collagen fibers assessed by Atomic Pressure Microscopy in rat hepatic fibrosis mannequin. J Nanosci Nanotechnol. 2015;15(9):6452–9.
Kaps L, Nuhn L, Aslam M, Brose A, Foerster F, Rosigkeit S, et al. In vivo gene-silencing in fibrotic liver by siRNA-loaded cationic nanohydrogel particles. Adv Healthc Mater. 2015;4(18):2809–15.
Nie X, Liu Y, Li M, Yu X, Yuan W, Huang S, et al. SP94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for concentrating on remedy of hepatocellular carcinoma. AAPS PharmSciTech. 2020;21(4):124.
Li Z, Ye L, Liu J, Lian D, Li X. Sorafenib-loaded nanoparticles based mostly on biodegradable dendritic polymers for enhanced remedy of hepatocellular carcinoma. Int J Nanomed. 2020;15:1469–80.
Varshosaz J, Raghami F, Rostami M, Jahanian A. PEGylated trimethylchitosan emulsomes conjugated to octreotide for focused supply of sorafenib to hepatocellular carcinoma cells of HepG2. J Liposome Res. 2019;29(4):383–98.
Varshosaz J, Sadri F, Rostami M, Mirian M, Taymouri S. Synthesis of pectin-deoxycholic acid conjugate for focused supply of anticancer medicine in hepatocellular carcinoma. Int J Biol Macromol. 2019;139:665–77.
Toshiyama R, Konno M, Eguchi H, Takemoto H, Noda T, Asai A, et al. Poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate targets aminopeptidase N and exerts an antitumor impact in hepatocellular carcinoma stem cells. Oncogene. 2019;38(2):244–60.
Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver concentrating on. Biomed Pharmacother. 2019;112:108691.
Huang Y, Xu Y, Wu Y, Chen T, Lu W, Yu J. Bioinspired nanoplatform for enhanced supply effectivity of doxorubicin into nucleus with quick endocytosis, lysosomal pH-triggered drug launch, and diminished efflux. Colloids Surf B Biointerfaces. 2019;183:110413.
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, et al. Implication of nano-antioxidant remedy for remedy of hepatocellular carcinoma utilizing PLGA nanoparticles of rutin. Nanomedicine (Lond). 2018;13(8):849–70.
Hu F, Wang H, Zhang S, Peng Y, Su L, Chang J, et al. Inhibition of myeloid differentiation issue 88 signaling mediated by histidine-grafted poly(β-amino ester) ester nanovector induces donor-specific liver allograft tolerance. Int J Nanomed. 2015;10:4367–82.
Mistry NP, Desai JL, Thakkar HP. Formulation and analysis of tacrolimus-loaded galactosylated poly(lactic-co-glycolic acid) nanoparticles for liver concentrating on. J Pharm Pharmacol. 2015;67(10):1337–48.
Azzi J, Yin Q, Uehara M, Ohori S, Tang L, Cai Ok, et al. Focused supply of immunomodulators to lymph nodes. Cell Rep. 2016;15(6):1202–13.
Mansouri A, Abnous Ok, Alibolandi M, Taghdisi SM, Ramezani M. Focused supply of tacrolimus to T cells by pH-responsive aptamer-chitosan- poly(lactic-co-glycolic acid) nanocomplex. J Cell Physiol. 2019;234(10):18262–71.
Asselah T, Loureiro D, Boyer N, Mansouri A. Targets and future direct-acting antiviral approaches to realize hepatitis B virus remedy. Lancet Gastroenterol Hepatol. 2019;4(11):883–92.
Jesus S, Soares E, Costa J, Borchard G, Borges O. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based mostly nanoparticles. Int J Pharm. 2016;504(1–2):59–69.
Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and analysis of HBsAg polymeric nanoparticles as antigen supply carriers. Int J Biol Macromol. 2018;111:804–12.
Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and diminished hepatitis-B virus in humanized mannequin. Artif Cells Nanomed Biotechnol. 2018;46(8):2033–42.
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene supply: strategies for enchancment and functions. Adv Colloid Interface Sci. 2019;268:25–38.
Ndeboko B, Lemamy GJ, Nielsen PE, Cova L. Therapeutic potential of cell penetrating peptides (CPPs) and cationic polymers for persistent hepatitis B. Int J Mol Sci. 2015;16(12):28230–41.
Ayoub MM, Elantouny NG, El-Nahas HM, Ghazy FES. Injectable PLGA Adefovir microspheres; the way in which for long run remedy of persistent hepatitis-B. Eur J Pharm Sci. 2018;118:24–31.
Ayoub MM, Jasti B, Elantouny NG, Elnahas H, Ghazy FE. Comparative research of PLGA in-situ implant and nanoparticle formulations of entecavir; in-vitro and in-vivo analysis. J Drug Deliv Sci Technol. 2020;56:101585.
Zhang C, Wang A, Wang H, Yan M, Liang R, He X, et al. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term remedy of persistent hepatitis-B: preparation and in vitro and in vivo analysis. Int J Pharm. 2019;560:27–34.
Hamdi M, Abdel-Bar HM, Elmowafy E, Al-Jamal KT, Awad GAS. An built-in vitamin E-coated polymer hybrid nanoplatform: a profitable choice for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect. PLoS ONE. 2020;15(1):e0227231.
Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver illness. Nat Rev Dis Primers. 2015;1:15080.
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD improvement and therapeutic methods. Nat Med. 2018;24(7):908–22.
Wang XJ, Malhi H. Nonalcoholic fatty liver illness. Ann Intern Med. 2018;169(9):65–80.
Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, et al. Metabolomic identification subtypes nonalcoholic steatohepatitis. Gastroenterology. 2017;152(6):1449–61.
Cusi Ok. Position of weight problems and lipotoxicity within the improvement of nonalcoholic steatohepatitis: pathophysiology and scientific implications. Gastroenterology. 2012;142(4):711–25.
Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central function of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774–88.
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi Ok, Rinella M, et al. The prognosis and administration of nonalcoholic fatty liver illness: observe steerage from the American Affiliation for the research of Liver Ailments. Hepatology. 2018;67(1):328–57.
Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral supply of silymarin and enhanced lipid-lowering impact in NAFLD. J Nanobiotechnol. 2018;16(1):64.
Marcellin P, Kutala BK. Liver ailments: a significant, uncared for world public well being drawback requiring pressing actions and large-scale screening. Liver Int. 2018;38(Suppl 1):2–6.
Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Intestine. 2015;64(5):830–41.
Novo E, Parola M. Redox mechanisms in hepatic persistent wound therapeutic and fibrogenesis. Fibrogenesis Tissue Restore. 2008;1(1):5.
Novo E, Cannito S, Paternostro C, Bocca C, Miglietta A, Parola M. Mobile and molecular mechanisms in liver fibrogenesis. Arch Biochem Biophys. 2014;548:20–37.
Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and scientific points. Mol Features Med. 2019;65:37–55.
Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832(7):876–83.
Kang JH, Toita R, Murata M. Liver cell-targeted supply of therapeutic molecules. Crit Rev Biotechnol. 2016;36(1):132–43.
Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Environment friendly drug and gene supply to liver fibrosis: rationale, current advances, and views. Acta Pharm Sinica B. 2020;10(7):1279–93.
Rohilla R, Garg T, Goyal AK, Rath G. Natural and polymeric approaches for liver-targeting drug supply: novel methods and their significance. Drug Deliv. 2016;23(5):1645–61.
Rockey DC. Present and future anti-fibrotic therapies for persistent liver illness. Clin Liver Dis. 2008;12(4):939–62.
Yoon YJ, Friedman SL, Lee YA. Antifibrotic therapies: the place are we now? Semin Liver Dis. 2016;36(1):87–98.
Latief U, Ahmad R. Natural treatments for liver fibrosis: a evaluate on the mode of motion of fifty herbs. J Tradit Complement Med. 2018;8(3):352–60.
Li W, Zhou C, Fu Y, Chen T, Liu X, Zhang Z, et al. Focused supply of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B. 2020;10(4):693–710.
Lin L, Gong H, Li R, Huang J, Cai M, Lan T, et al. Nanodrug with ROS and pH dual-sensitivity ameliorates liver fibrosis by way of multicellular regulation. Adv Sci (Weinh). 2020;7(7):1903138.
Hu Q, Hu S, Fleming E, Lee JY, Luo Y. Chitosan-caseinate-dextran ternary advanced nanoparticles for potential oral supply of astaxanthin with considerably improved bioactivity. Int J Biol Macromol. 2020;151:747–56.
Lin TT, Gao DY, Liu YC, Sung YC, Wan DH, Liu JY, et al. Growth and characterization of sorafenib-loaded PLGA nanoparticles for the systemic remedy of liver fibrosis. J Managed Launch. 2016;221:62–70.
Fan QQ, Zhang CL, Qiao JB, Cui PF, Xing L, Oh YK, et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis remedy. Biomaterials. 2020;230:119616.
Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, et al. Synergistic MicroRNA remedy in liver fibrotic rat utilizing MRI-Seen nanocarrier concentrating on hepatic stellate cells. Adv Sci (Weinh). 2019;6(5):1801809.
Leber N, Kaps L, Aslam M, Schupp J, Brose A, Schäffel D, et al. SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. J Management Launch. 2017;248:10–23.
Zhang Z, Wang C, Zha Y, Hu W, Gao Z, Zang Y, et al. Corona-directed nucleic acid supply into hepatic stellate cells for liver fibrosis remedy. ACS Nano. 2015;9(3):2405–19.
Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.
Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao YM, El-Serag HB. Threat of hepatocellular most cancers in HCV sufferers handled with direct-acting antiviral brokers. Gastroenterology. 2017;153(4):996–1005.
Llovet JM, Bruix J. Systematic evaluate of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.
Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, et al. Nanomedicine as a putative method for energetic concentrating on of hepatocellular carcinoma. Semin Most cancers Biol. 2021;69:91–9.
Huang Y, Zhang W, Xu Y, Zhu S, Wu Y, Chen T, et al. Dynamic core crosslinked camptothecin prodrug micelles with discount sensitivity and boronic acid-mediated enhanced endocytosis: an clever tumor-targeted supply nanoplatform. Int J Pharm. 2020;580:119250.
Yang DH, Kim HJ, Park Ok, Kim JK, Chun HJ. Preparation of poly-l-lysine-based nanoparticles with pH-sensitive launch of curcumin for focused imaging and remedy of liver most cancers in vitro and in vivo. Drug Deliv. 2018;25(1):950–60.
Yang T, Du G, Cui Y, Yu R, Hua C, Tian W, et al. pH-sensitive doxorubicin-loaded polymeric nanocomplex based mostly on β-cyclodextrin for liver cancer-targeted remedy. Int J Nanomed. 2019;14:1997–2010.
Yang D, Luo W, Wang J, Zheng M, Liao XH, Zhang N, et al. A novel managed launch formulation of the Pin1 inhibitor ATRA to enhance liver most cancers remedy by concurrently blocking a number of most cancers pathways. J Management Launch. 2018;269:405–22.
Gan H, Chen L, Sui X, Wu B, Zou S, Li A, et al. Enhanced supply of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for focused remedy of hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl. 2018;91:395–403.
Wang J, Xia Y, Liu H, Xia J, Qian M, Zhang L, et al. Poly(lactobionamidoethyl methacrylate)-based amphiphiles with ultrasound-labile elements in manufacture of drug supply nanoparticulates for augmented cytotoxic efficacy to hepatocellular carcinoma. J Colloid Interface Sci. 2019;551:1–9.
Yan T, Cheng J, Liu Z, Cheng F, Wei X, Huang Y, et al. Acid-sensitive polymeric vector concentrating on to hepatocarcinoma cells by way of glycyrrhetinic acid receptor-mediated endocytosis. Mater Sci Eng C Mater Biol Appl. 2018;87:32–40.
Guo H, Xu M, Cao Z, Li W, Chen L, Xie X, et al. Ultrasound-assisted mir-122-loaded polymeric nanodroplets for hepatocellular carcinoma gene remedy. Mol Pharm. 2020;17(2):541–53.
Yang J, Zhang J, Liu Y, Shi Z, Han H, Li Q. Phenylboronic acid-modified polyamidoamine-mediated supply of brief GC wealthy DNA for hepatocarcinoma gene remedy. Biomater Sci. 2019;7(8):3348–58.
Liu L, Zong ZM, Liu Q, Jiang SS, Zhang Q, Cen LQ, et al. A novel galactose-PEG-conjugated biodegradable copolymer is an environment friendly gene supply vector for immunotherapy of hepatocellular carcinoma. Biomaterials. 2018;184:20–30.
Wu B, Li A, Zhang Y, Liu X, Zhou S, Gan H, et al. Resistance of hepatocellular carcinoma to sorafenib will be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles. Knowledgeable Opin Drug Deliv. 2020;17(4):573–87.
Ning Q, Liu YF, Ye PJ, Gao P, Li ZP, Tang SY, et al. Supply of liver-specific miRNA-122 utilizing a focused macromolecular prodrug towards synergistic remedy for hepatocellular carcinoma. ACS Appl Mater Interfaces. 2019;11(11):10578–88.
Cheng H, Wu Z, Wu C, Wang X, Liow SS, Li Z, et al. Overcoming STC2 mediated drug resistance via drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver most cancers cells. Mater Sci Eng C Mater Biol Appl. 2018;83:210–7.
O’Leary JG, Lepe R, Davis GL. Indications for liver transplantation. Gastroenterology. 2008;134(6):1764–76.
European Affiliation for the Research of the Liver. EASL scientific observe pointers: liver transplantation. J Hepatol. 2016;64(2):433–85.
Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: scientific implications. Tissue Antigens. 2007;69(6):545–56.
Banff schema for grading. Liver allograft rejection: a global consensus doc. Hepatology. 1997;25(3):658–63.
Halloran PF, Kreepala C, Einecke G, Loupy A, Sellarés J. Therapeutic approaches to organ transplantation. In: Li XC, Jevnikar AM, editors. Transplant immunology. Hoboken: Wiley; 2015.
Wang Y, Wang C, Fu S, Liu Q, Dou D, Lv H, et al. Preparation of Tacrolimus loaded micelles based mostly on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone). Int J Pharm. 2011;407(1–2):184–9.
Wang Y, Wang C, Wang Y, Luo F, Yan X, Qian Z. Micelles of methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) as a novel drug supply automobile for tacrolimus. J Biomed Nanotechnol. 2013;9(2):147–57.
Xu W, Ling P, Zhang T. Towards immunosuppressive results on liver transplantation in rat mannequin: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int J Pharm. 2014;460(1–2):173–80.
Zhang D, Pan X, Wang S, Zhai Y, Guan J, Fu Q, et al. Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer as an oral high-performance supply service of Tacrolimus. Mol Pharm. 2015;12(7):2337–51.
Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, et al. Formulation and in vivo pharmacokinetic analysis of ethyl cellulose-coated sustained launch multiple-unit system of tacrolimus. Int J Biol Macromol. 2018;109:544–50.
Wang M, Solar J, Zhai Y, Lian H, Luo C, Li L, et al. Enteric polymer based mostly on pH-responsive aliphatic polycarbonate functionalized with vitamin E to facilitate oral supply of tacrolimus. Biomacromolecules. 2015;16(4):1179–90.
Mohammed M, Mansell H, Shoker A, Wasan KM, Wasan EK. Growth and in vitro characterization of chitosan-coated polymeric nanoparticles for oral supply and sustained launch of the immunosuppressant drug mycophenolate mofetil. Drug Dev Ind Pharm. 2019;45(1):76–87.
Hopf U, Ramadori G. Physiology and pathophysiology of the reticuloendothelial system of the liver (writer’s transl). Leber Magen Darm. 1980;10(5):277–83.
Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and floor charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407–16.
Poon W, Zhang YN, Ouyang B, Kingston BR, Wu JLY, Wilhelm S, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–98.
Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as rising mechanisms of nanomaterial toxicity. Half Fibre Toxicol. 2012;9:20.
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging brokers: concerns and caveats. Nanomedicine (Lond). 2008;3(5):703–17.
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into strong tumours. Nat Mater. 2020;19(5):566–75.
Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Immediately. 2012;7(1):53–65.
Fan W, Zhang L, Li Y, Wu H. Current progress of crosslinking methods for polymeric micelles with enhanced drug supply in most cancers remedy. Curr Med Chem. 2019;26(13):2356–76.
Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical functions. Mater Sci Eng C Mater Biol Appl. 2021;119:111626.
Xiao Ok, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The impact of floor cost on in vivo biodistribution of PEG-oligocholic acid based mostly micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.
Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574–81.
Srisa-Nga Ok, Mankhetkorn S, Okonogi S, Khonkarn R. Supply of superparamagnetic polymeric Micelles loaded with quercetin to Hepatocellular Carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of Controlling Drug Launch. Chem Rev. 2016;116(4):2602–63.
[ad_2]