Polymeric nanomedicines for the remedy of hepatic ailments | Journal of Nanobiotechnology

[ad_1]

  • Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver ailments on this planet. J Hepatol. 2019;70(1):151–71.

    Article 
    PubMed 

    Google Scholar
     

  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

    Article 
    PubMed 

    Google Scholar
     

  • Singh L, Indermun S, Govender M, Kumar P, du Toit LC, Choonara YE, et al. Drug supply methods for antivirals towards hepatitis B virus. Viruses. 2018;10(5):267.

    Article 
    PubMed Central 

    Google Scholar
     

  • Geissler EK, Schlitt HJ. Immunosuppression for liver transplantation. Intestine. 2009;58(3):452–63.

    Article 
    PubMed 

    Google Scholar
     

  • Lohitesh Ok, Chowdhury R, Mukherjee S. Resistance a significant hindrance to chemotherapy in hepatocellular carcinoma: an perception. Most cancers Cell Int. 2018;18:44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: a evaluate. JAMA. 2020;323(12):1175–83.

    Article 
    PubMed 

    Google Scholar
     

  • Bataller R, Brenner DA. Liver fibrosis. J Clin Make investments. 2005;115(2):209–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy LH, Couvreur P. Nanotechnology for remedy and imaging of liver ailments. J Hepatol. 2011;55(6):1461–6.

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article 
    PubMed 

    Google Scholar
     

  • Gregoriadis G, Wills EJ, Swain CP, Tavill AS. Drug-carrier potential of liposomes in most cancers chemotherapy. Lancet. 1974;1(7870):1313–6.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Wang H, Ong ZY, Xu Ok, Ee PLR, Zheng S, et al. Polymer- and lipid-based nanoparticle therapeutics for the remedy of liver ailments. Nano Immediately. 2010;5(4):296–312.

    Article 

    Google Scholar
     

  • Bottger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle applied sciences for liver concentrating on. Adv Drug Deliv Rev. 2020;154–155:79–101.

    Article 
    PubMed 

    Google Scholar
     

  • Couvreur P, Vauthier C. Nanotechnology: clever design to deal with advanced illness. Pharm Res. 2006;23(7):1417–50.

    Article 
    PubMed 

    Google Scholar
     

  • Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, et al. Conventional chinese language medication mixed with hepatic focused drug supply programs: a brand new technique for the remedy of liver ailments. Biomed Pharmacother. 2019;117:109128.

    Article 
    PubMed 

    Google Scholar
     

  • Siepmann J, Faham A, Clas SD, Boyd BJ, Jannin V, Bernkop-Schnürch A, et al. Lipids and polymers in pharmaceutical expertise: lifelong companions. Int J Pharm. 2019;558:128–42.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu X, Anquillare ELB, Farokhzad OC, Shi J. Chapter 22-polymer- and protein-based nanotechnologies for most cancers theranostics. In: Chen X, Wong S, editors. Most cancers theranostics. Oxford: Educational Press; 2014. p. 419–36.

    Chapter 

    Google Scholar
     

  • Kamaly N, Xiao ZY, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Focused polymeric therapeutic nanoparticles: design, improvement and scientific translation. Chem Soc Rev. 2012;41(7):2971–3010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farokhzad OC, Langer R. Nanomedicine: growing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.

    Article 
    PubMed 

    Google Scholar
     

  • Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug concentrating on: part I analysis of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Q, Solar X, Zeng L, Liu J, Zhang Z. A randomized multicenter part II scientific trial of mitoxantrone-loaded nanoparticles within the remedy of 108 sufferers with unresected hepatocellular carcinoma. Nanomedicine. 2009;5(4):419–23.

    Article 
    PubMed 

    Google Scholar
     

  • Jazayeri-Tehrani SA, Rezayat SM, Mansouri S, Qorbani M, Alavian SM, Daneshi-Maskooni M, et al. Nano-curcumin improves glucose indices, lipids, irritation, and Nesfatin in obese and overweight sufferers with non-alcoholic fatty liver illness (NAFLD): a double-blind randomized placebo-controlled scientific trial. Nutr Metab. 2019;16:8.

    Article 

    Google Scholar
     

  • Abdel-Misih SRZ, Bloomston M. Liver anatomy. Surg Clin N Am. 2010;90(4):643–53.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell kind for innate immunity. Cell Mol Immunol. 2016;13(3):301–15.

    Article 
    PubMed 

    Google Scholar
     

  • Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):54–62.

    Article 

    Google Scholar
     

  • Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol. 2015;5(4):1751–74.

    Article 
    PubMed 

    Google Scholar
     

  • Braet F, Wisse E. Structural and purposeful facets of liver sinusoidal endothelial cell fenestrae: a evaluate. Comp Hepatol. 2002;1(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura R, Uemoto S, Tabata Y. Augmented liver concentrating on of exosomes by floor modification with cationized pullulan. Acta Biomater. 2017;57:274–84.

    Article 
    PubMed 

    Google Scholar
     

  • Kim SI, Shin D, Choi TH, Lee JC, Cheon G-J, Kim Ok-Y, et al. Systemic and particular supply of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther. 2007;15(6):1145–52.

    Article 
    PubMed 

    Google Scholar
     

  • Yang T, Lan Y, Cao M, Ma X, Cao A, Solar Y, et al. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as mixture remedy remedy for liver most cancers. Colloids Surf B Biointerfaces. 2019;175:106–15.

    Article 
    PubMed 

    Google Scholar
     

  • McCuskey RS. The hepatic microvascular system in well being and its response to toxicants. Anat Rec (Hoboken). 2008;291(6):661–71.

    Article 

    Google Scholar
     

  • Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147-51.

    Article 

    Google Scholar
     

  • Lachman N, Pawlina W. The liver and biliary equipment: primary structural anatomy and variations. In: Nicholas J, Talley MDP, Keith D. Lindor MD, Hugo E. Vargas MD, editors. Sensible gastroenterology and hepatology: liver and biliary illness. Oxford: Blackwell Publishing Ltd; 2010. pp. 1–16.


    Google Scholar
     

  • Walkey CD, Chan WC. Understanding and controlling the interplay of nanomaterials with proteins in a physiological surroundings. Chem Soc Rev. 2012;41(7):2780–99.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng SH, Li FC, Souris JS, Yang CS, Tseng FG, Lee HS, et al. Visualizing dynamics of sub-hepatic distribution of nanoparticles utilizing intravital multiphoton fluorescence microscopy. ACS Nano. 2012;6(5):4122–31.

    Article 
    PubMed 

    Google Scholar
     

  • Ogawara Ok, Yoshida M, Higaki Ok, Kimura T, Shiraishi Ok, Nishikawa M, et al. Hepatic uptake of polystyrene microspheres in rats: impact of particle dimension on intrahepatic distribution. J Management Launch. 1999;59(1):15–22.

    Article 
    PubMed 

    Google Scholar
     

  • Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of enormous liposomes. FEBS Lett. 1999;448(1):193–6.

    Article 
    PubMed 

    Google Scholar
     

  • Champion JA, Mitragotri S. Form induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: mobile uptake and hepatobiliary elimination. J Management Launch. 2016;240:332–48.

    Article 
    PubMed 

    Google Scholar
     

  • Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, et al. Focused nanoparticles for most cancers remedy. Nano Immediately. 2007;2(3):14–21.

    Article 

    Google Scholar
     

  • Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46(12 Pt 1):6387–92.

    PubMed 

    Google Scholar
     

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a evaluate. J Management Launch. 2000;65(1–2):271–84.

    Article 
    PubMed 

    Google Scholar
     

  • Bertrand N, Wu J, Xu XY, Kamaly N, Farokhzad OC. Most cancers nanotechnology: the affect of passive and energetic concentrating on within the period of recent most cancers biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular dimension dependence and cutoff dimension. Most cancers Res. 1995;55(17):3752–6.

    PubMed 

    Google Scholar
     

  • Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, et al. Polymer-mediated supply of siRNAs to Hepatocellular Carcinoma: variables affecting specificity and effectiveness. Molecules. 2018;23(4):777.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, et al. Nanotechnology for hepatocellular carcinoma: from surveillance, prognosis to administration. Small. 2021;17(6):e2005236.

    Article 
    PubMed 

    Google Scholar
     

  • Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: their function in hepatocellular carcinoma. Crit Rev Oncol Hematol. 2020;151:102968.

    Article 
    PubMed 

    Google Scholar
     

  • Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug supply: the necessity for precision in reporting particle dimension parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article 
    PubMed 

    Google Scholar
     

  • Byrne JD, Betancourt T, Brannon-Peppas L. Energetic concentrating on schemes for nanoparticle programs in most cancers therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.

    Article 
    PubMed 

    Google Scholar
     

  • Danhier F, Feron O, Preat V. To take advantage of the tumor microenvironment: passive and energetic tumor concentrating on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148(2):135–46.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, et al. Collaborative meeting of doxorubicin and galactosyl diblock glycopolymers for focused drug supply of hepatocellular carcinoma. Biomater Sci. 2020;8(1):189–200.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao J, Yan C, Chen Z, Liu J, Track H, Wang W, et al. Twin-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug supply. J Colloid Interface Sci. 2019;540:66–77.

    Article 
    PubMed 

    Google Scholar
     

  • Kuruvilla SP, Tiruchinapally G, Kaushal N, ElSayed MEH. Impact of N-acetylgalactosamine ligand valency on concentrating on dendrimers to hepatic most cancers cells. Int J Pharm. 2018;545(1–2):27–36.

    Article 
    PubMed 

    Google Scholar
     

  • Detampel P, Witzigmann D, Krähenbühl S, Huwyler J. Hepatocyte concentrating on utilizing pegylated asialofetuin-conjugated liposomes. J Drug Goal. 2014;22(3):232–41.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Q, Zhang X, Chen T, Wang X, Fu Y, Jin Y, et al. A secure and environment friendly hepatocyte-selective service system based mostly on myristoylated preS1/21–47 area of hepatitis B virus. Nanoscale. 2015;7(20):9298–310.

    Article 
    PubMed 

    Google Scholar
     

  • Hefnawy A, Khalil IH, Arafa Ok, Emara M, El-Sherbiny IM. Twin-ligand functionalized core-shell chitosan-based nanocarrier for hepatocellular carcinoma-targeted drug supply. Int J Nanomed. 2020;15:821–37.

    Article 

    Google Scholar
     

  • Shen Z, Li B, Liu Y, Zheng G, Guo Y, Zhao R, et al. A self-assembly nanodrug supply system based mostly on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC concentrating on remedy. Nanomedicine. 2018;14(2):227–36.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Qi Y, Liu L, Ganbold T, Baigude H, Han J. Preparation and cell actions of lactosylated curdlan-triornithine nanoparticles for enhanced DNA/siRNA supply in hepatoma cells. Carbohydr Polym. 2019;225:115252.

    Article 
    PubMed 

    Google Scholar
     

  • Qi XR, Yan WW, Shi J. Hepatocytes concentrating on of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol. World J Gastroenterol. 2005;11(32):4947–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Shi S, Liu Y, Zhao Y, Solar Y. Focused pharmacokinetics of polymeric micelles modified with glycyrrhetinic acid and hydrazone bond in H22 tumor-bearing mice. J Biomater Appl. 2019;34(1):141–51.

    Article 
    PubMed 

    Google Scholar
     

  • Li ZP, Tian GX, Jiang H, Pan RY, Lian B, Wang M, et al. Liver-targeting and pH-sensitive sulfated hyaluronic acid blended micelles for hepatoma remedy. Int J Nanomed. 2019;14:9437–52.

    Article 

    Google Scholar
     

  • Longmuir KJ, Haynes SM, Baratta JL, Kasabwalla N, Robertson RT. Liposomal supply of doxorubicin to hepatocytes in vivo by concentrating on heparan sulfate. Int J Pharm. 2009;382(1):222–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fielding CJ. Lipoprotein receptors, plasma ldl cholesterol metabolism, and the regulation of mobile free ldl cholesterol focus. FASEB J. 1992;6(13):3162–8.

    Article 
    PubMed 

    Google Scholar
     

  • Jędrzak A, Grześkowiak BF, Golba Ok, Coy E, Synoradzki Ok, Jurga S, et al. Magnetite nanoparticles and spheres for chemo- and photothermal remedy of hepatocellular carcinoma in vitro. Int J Nanomed. 2020;15:7923–36.

    Article 

    Google Scholar
     

  • Koirala N, Das D, Fayazzadeh E, Sen S, McClain A, Puskas JE, et al. Folic acid conjugated polymeric drug supply automobile for focused most cancers detection in hepatocellular carcinoma. J Biomed Mater Res A. 2019;107(11):2522–35.

    Article 
    PubMed 

    Google Scholar
     

  • Gao D-Y, Lin T-T, Sung Y-C, Liu YC, Chiang W-H, Chang C-C, et al. CXCR4-targeted lipid-coated PLGA nanoparticles ship sorafenib and overcome acquired drug resistance in liver most cancers. Biomaterials. 2015;67:194–203.

    Article 
    PubMed 

    Google Scholar
     

  • Kumari P, Rompicharla SVK, Muddineti OS, Ghosh B, Biswas S. Transferrin-anchored poly(lactide) based mostly micelles to enhance anticancer exercise of curcumin in hepatic and cervical most cancers cell monolayers and 3D spheroids. Int J Biol Macromol. 2018;116:1196–213.

    Article 
    PubMed 

    Google Scholar
     

  • Yang H, Miao Y, Chen L, Li Z, Yang R, Xu X, et al. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-l-lysine)-grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Int J Biol Macromol. 2020;148:483–92.

    Article 
    PubMed 

    Google Scholar
     

  • Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida Ok, Harashima H. Ligand density on the floor of a nanoparticle and totally different uptake mechanism: two vital components for profitable siRNA supply to liver endothelial cells. Int J Pharm. 2014;475(1):227–37.

    Article 
    PubMed 

    Google Scholar
     

  • Kamps JA, Morselt HW, Swart PJ, Meijer DK, Scherphof GL. Huge concentrating on of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci USA. 1997;94(21):11681–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Berkel TJ, De Rijke YB, Kruijt JK. Completely different destiny in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by numerous scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem. 1991;266(4):2282–9.

    Article 
    PubMed 

    Google Scholar
     

  • Toriyabe N, Hayashi Y, Hyodo M, Harashima H. Synthesis and analysis of stearylated hyaluronic acid for the energetic supply of liposomes to liver endothelial cells. Biol Pharm Bull. 2011;34(7):1084–9.

    Article 
    PubMed 

    Google Scholar
     

  • Praaning-van Dalen DP, de Leeuw AM, Brouwer A, Knook DL. Rat liver endothelial cells have a higher capability than Kupffer cells to endocytose N-acetylglucosamine- and mannose-terminated glycoproteins. Hepatology. 1987;7(4):672–9.

    Article 
    PubMed 

    Google Scholar
     

  • Sano A, Taylor ME, Leaning MS, Summerfield JA. Uptake and processing of glycoproteins by remoted rat hepatic endothelial and kupffer cells. J Hepatol. 1990;10(2):211–6.

    Article 
    PubMed 

    Google Scholar
     

  • Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, et al. The mannose receptor on murine liver sinusoidal endothelial cells is the primary denatured collagen clearance receptor. Hepatology. 2007;45(6):1454–61.

    Article 
    PubMed 

    Google Scholar
     

  • Fridman WH. Fc receptors and immunoglobulin binding components. FASEB J. 1991;5(12):2684–90.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu J, Qin F, Ji Z, Fei W, Tan Z, Hu Y, et al. Mannose-modified PLGA nanoparticles for sustained and focused supply in hepatitis B virus immunoprophylaxis. AAPS PharmSciTech. 2019;21(1):13.

    Article 
    PubMed 

    Google Scholar
     

  • Lai C, Li C, Luo X, Liu M, Liu X, Hu L, et al. Use of dual-ligand modification in Kupffer cell-targeted liposomes to look at the contribution of Kupffer cells to accelerated blood clearance phenomenon. Mol Pharm. 2018;15(7):2548–58.

    Article 
    PubMed 

    Google Scholar
     

  • Higuchi Y, Kawakami S, Yamashita F, Hashida M. The potential function of fucosylated cationic liposome/NFκB decoy complexes within the remedy of cytokine-related liver illness. Biomaterials. 2007;28(3):532–9.

    Article 
    PubMed 

    Google Scholar
     

  • Shimada Ok, Kamps JAAM, Regts J, Ikeda Ok, Shiozawa T, Hirota S, et al. Biodistribution of liposomes containing artificial galactose-terminated diacylglyceryl-poly(ethyleneglycol)s. Biochim Biophys Acta (BBA) Biomembr. 1997;1326(2):329–41.

    Article 

    Google Scholar
     

  • Rafique A, Etzerodt A, Graversen JH, Moestrup SK, Dagnæs-Hansen F, Møller HJ. Focused lipid nanoparticle supply of calcitriol to human monocyte-derived macrophages in vitro and in vivo: investigation of the anti-inflammatory results of calcitriol. Int J Nanomed. 2019;14:2829–46.

    Article 

    Google Scholar
     

  • Koning GA, Morselt HW, Gorter A, Allen TM, Zalipsky S, Scherphof GL, et al. Interplay of in a different way designed immunoliposomes with colon most cancers cells and kupffer cells. An in vitro comparability. Pharm Res. 2003;20(8):1249–57.

    Article 
    PubMed 

    Google Scholar
     

  • Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. 2006;124(5):915–27.

    Article 
    PubMed 

    Google Scholar
     

  • Dutta R, Kumar V, Peng Y, Evande RE, Grem JL, Mahato RI. Pharmacokinetics and biodistribution of GDC-0449 loaded micelles in regular and liver fibrotic mice. Pharm Res. 2017;34(3):564–78.

    Article 
    PubMed 

    Google Scholar
     

  • Yildirim T, Matthäus C, Press AT, Schubert S, Bauer M, Popp J, et al. Uptake of retinoic acid-modified PMMA nanoparticles in LX-2 and liver tissue by Raman Imaging and Intravital Microscopy. Macromol Biosci. 2017;17(10):1700064.

    Article 

    Google Scholar
     

  • Qiao JB, Fan QQ, Xing L, Cui PF, He YJ, Zhu JC, et al. Vitamin A-decorated biocompatible micelles for chemogene remedy of liver fibrosis. J Management Launch. 2018;283:113–25.

    Article 
    PubMed 

    Google Scholar
     

  • El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby TI, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus typical imatinib: a novel technique with potent efficacy in experimental liver fibrosis. J Management Launch. 2017;266:226–37.

    Article 
    PubMed 

    Google Scholar
     

  • Ji D, Wang Q, Zhao Q, Tong H, Yu M, Wang M, et al. Co-delivery of miR-29b and germacrone based mostly on cyclic RGD-modified nanoparticles for liver fibrosis remedy. J Nanobiotechnol. 2020;18(1):86.

    Article 

    Google Scholar
     

  • Yang J, Hou Y, Ji G, Track Z, Liu Y, Dai G, et al. Focused supply of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. Eur J Pharm Sci. 2014;52:180–90.

    Article 
    PubMed 

    Google Scholar
     

  • van Dijk F, Teekamp N, Beljaars L, Put up E, Zuidema J, Steendam R, et al. Pharmacokinetics of a sustained launch formulation of PDGFβ-receptor directed service proteins to focus on the fibrotic liver. J Management Launch. 2018;269:258–65.

    Article 
    PubMed 

    Google Scholar
     

  • van Dijk F, Teekamp N, Put up E, Schuppan D, Kim YO, Zuidema J, et al. The antifibrotic potential of a sustained launch formulation of a PDGFβ-receptor focused rho kinase inhibitor. J Management Launch. 2019;296:250–7.

    Article 
    PubMed 

    Google Scholar
     

  • Adrian JE, Poelstra Ok, Scherphof GL, Molema G, Meijer DK, Reker-Smit C, et al. Interplay of focused liposomes with main cultured hepatic stellate cells: involvement of a number of receptor programs. J Hepatol. 2006;44(3):560–7.

    Article 
    PubMed 

    Google Scholar
     

  • Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and illness. Nat Rev Immunol. 2017;17(5):306–21.

    Article 
    PubMed 

    Google Scholar
     

  • Hammoutene A, Rautou PE. Position of liver sinusoidal endothelial cells in non-alcoholic fatty liver illness. J Hepatol. 2019;70(6):1278–91.

    Article 
    PubMed 

    Google Scholar
     

  • Yin C, Evason KJ, Asahina Ok, Stainier DY. Hepatic stellate cells in liver improvement, regeneration, and most cancers. J Clin Make investments. 2013;123(5):1902–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gissen P, Arias IM. Structural and purposeful hepatocyte polarity and liver illness. J Hepatol. 2015;63(4):1023–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park Ok, Ramasamy MK, et al. N,N,N-Trimethyl chitosan nanoparticles for managed intranasal supply of HBV floor antigen. Carbohydr Polym. 2012;89(4):1289–97.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA supply and HBV gene-silencing. Int J Pharm. 2011;415(1–2):259–66.

    Article 
    PubMed 

    Google Scholar
     

  • Xue M, Hu S, Lu Y, Zhang Y, Jiang X, An S, et al. Growth of chitosan nanoparticles as drug supply system for a prototype capsid inhibitor. Int J Pharm. 2015;495(2):771–82.

    Article 
    PubMed 

    Google Scholar
     

  • Miao J, Yang XQ, Gao Z, Li Q, Meng TT, Wu JY, et al. Redox-responsive chitosan oligosaccharide-SS-Octadecylamine polymeric service for environment friendly anti-hepatitis B virus gene remedy. Carbohydr Polym. 2019;212:215–21.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Han Q, Zhao H, Xu D, Zhang J. Single dose HBsAg CS-γ-PGA nanogels induce potent protecting immune responses towards HBV an infection. Eur J Pharm Biopharm. 2018;124:82–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao R, Zhu M, Zhou S, Feng W, Chen H. Rapamycin-loaded mPEG-PLGA nanoparticles ameliorate hepatic steatosis and liver damage in non-alcoholic fatty liver illness. Entrance Chem. 2020;8:407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zai W, Chen W, Wu Z, Jin X, Fan J, Zhang X, et al. Focused interleukin-22 gene supply within the liver by Polymetformin and Penetratin-Based mostly hybrid nanoparticles to deal with nonalcoholic fatty liver illness. ACS Appl Mater Interfaces. 2019;11(5):4842–57.

    Article 
    PubMed 

    Google Scholar
     

  • Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, et al. The hepatic-targeted, resveratrol loaded nanoparticles for aid of excessive fats diet-induced nonalcoholic fatty liver illness. J Management Launch. 2019;307:139–49.

    Article 
    PubMed 

    Google Scholar
     

  • Lee S, Han D, Kang HG, Jeong SJ, Jo JE, Shin J, et al. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver illness by restoring autophagic clearance. Biomaterials. 2019;197:1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Wan SQ, Zhang L, Quan YY, Wei Ok. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver illness remedy. R Soc Open Sci. 2018;5(11):181457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages utilizing PLGA nanoparticles for the remedy of non-alcoholic steatohepatitis. J Management Launch. 2018;288:227–38.

    Article 
    PubMed 

    Google Scholar
     

  • He S, Guo W, Deng F, Chen Ok, Jiang Y, Dong M, et al. Focused supply of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the remedy of NAFLD. Artif Cells Nanomed Biotechnol. 2018;46(sup2):217–28.

    Article 
    PubMed 

    Google Scholar
     

  • Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane nanoparticle-loaded fenofibrate exerts inhibitory results on nonalcoholic fatty liver illness in mice. Mol Pharm. 2018;15(10):4550–7.

    Article 
    PubMed 

    Google Scholar
     

  • Shafie F, Nabavizadeh F, Shafie Ardestani M, Panahi M, Adeli S, Samandari H, et al. Sorafenib-loaded PAMAM dendrimer attenuates liver fibrosis and its problems in bile-duct-ligated rats. Can J Physiol Pharmacol. 2019;97(8):691–8.

    Article 
    PubMed 

    Google Scholar
     

  • Krithika R, Vhora I, Verma RJ. Preparation, toxicity evaluation and in vivo protecting impact of phyllanthin-loaded PLGA nanoparticles towards CCl4-induced hepatic fibrosis. J Drug Deliv Sci Technol. 2019;51:364–71.

    Article 

    Google Scholar
     

  • Hassan R, Tammam SN, Safy SE, Abdel-Halim M, Asimakopoulou A, Weiskirchen R, et al. Prevention of hepatic stellate cell activation utilizing JQ1- and atorvastatin-loaded chitosan nanoparticles as a promising method in remedy of liver fibrosis. Eur J Pharm Biopharm. 2019;134:96–106.

    Article 
    PubMed 

    Google Scholar
     

  • El-Safy S, Tammam SN, Abdel-Halim M, Ali ME, Youshia J, Shetab Boushehri MA, et al. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: the impact of chitosan intrinsic collagen binding on the success of concentrating on. Eur J Pharm Biopharm. 2020;148:54–66.

    Article 
    PubMed 

    Google Scholar
     

  • Chang CC, Yang Y, Gao DY, Cheng HT, Hoang B, Chao PH, et al. Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl(4)-induced hepatic fibrosis in mice. J Drug Goal. 2018;26(5–6):516–24.

    Article 
    PubMed 

    Google Scholar
     

  • Younis N, Shaheen MA, Abdallah MH. Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the power of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother. 2016;81:93–103.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas RG, Moon MJ, Kim JH, Lee JH, Jeong YY. Effectiveness of losartan-loaded hyaluronic acid (HA) Micelles for the discount of superior hepatic fibrosis in C3H/HeN mice mannequin. PLoS ONE. 2015;10(12):e0145512.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safer AM, Hanafy NA, Bharali DJ, Cui H, Mousa SA. Impact of inexperienced tea extract encapsulated into chitosan nanoparticles on hepatic fibrosis collagen fibers assessed by Atomic Pressure Microscopy in rat hepatic fibrosis mannequin. J Nanosci Nanotechnol. 2015;15(9):6452–9.

    Article 
    PubMed 

    Google Scholar
     

  • Kaps L, Nuhn L, Aslam M, Brose A, Foerster F, Rosigkeit S, et al. In vivo gene-silencing in fibrotic liver by siRNA-loaded cationic nanohydrogel particles. Adv Healthc Mater. 2015;4(18):2809–15.

    Article 
    PubMed 

    Google Scholar
     

  • Nie X, Liu Y, Li M, Yu X, Yuan W, Huang S, et al. SP94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for concentrating on remedy of hepatocellular carcinoma. AAPS PharmSciTech. 2020;21(4):124.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Ye L, Liu J, Lian D, Li X. Sorafenib-loaded nanoparticles based mostly on biodegradable dendritic polymers for enhanced remedy of hepatocellular carcinoma. Int J Nanomed. 2020;15:1469–80.

    Article 

    Google Scholar
     

  • Varshosaz J, Raghami F, Rostami M, Jahanian A. PEGylated trimethylchitosan emulsomes conjugated to octreotide for focused supply of sorafenib to hepatocellular carcinoma cells of HepG2. J Liposome Res. 2019;29(4):383–98.

    Article 
    PubMed 

    Google Scholar
     

  • Varshosaz J, Sadri F, Rostami M, Mirian M, Taymouri S. Synthesis of pectin-deoxycholic acid conjugate for focused supply of anticancer medicine in hepatocellular carcinoma. Int J Biol Macromol. 2019;139:665–77.

    Article 
    PubMed 

    Google Scholar
     

  • Toshiyama R, Konno M, Eguchi H, Takemoto H, Noda T, Asai A, et al. Poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate targets aminopeptidase N and exerts an antitumor impact in hepatocellular carcinoma stem cells. Oncogene. 2019;38(2):244–60.

    Article 
    PubMed 

    Google Scholar
     

  • Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver concentrating on. Biomed Pharmacother. 2019;112:108691.

    Article 
    PubMed 

    Google Scholar
     

  • Huang Y, Xu Y, Wu Y, Chen T, Lu W, Yu J. Bioinspired nanoplatform for enhanced supply effectivity of doxorubicin into nucleus with quick endocytosis, lysosomal pH-triggered drug launch, and diminished efflux. Colloids Surf B Biointerfaces. 2019;183:110413.

    Article 
    PubMed 

    Google Scholar
     

  • Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, et al. Implication of nano-antioxidant remedy for remedy of hepatocellular carcinoma utilizing PLGA nanoparticles of rutin. Nanomedicine (Lond). 2018;13(8):849–70.

    Article 

    Google Scholar
     

  • Hu F, Wang H, Zhang S, Peng Y, Su L, Chang J, et al. Inhibition of myeloid differentiation issue 88 signaling mediated by histidine-grafted poly(β-amino ester) ester nanovector induces donor-specific liver allograft tolerance. Int J Nanomed. 2015;10:4367–82.

    Article 

    Google Scholar
     

  • Mistry NP, Desai JL, Thakkar HP. Formulation and analysis of tacrolimus-loaded galactosylated poly(lactic-co-glycolic acid) nanoparticles for liver concentrating on. J Pharm Pharmacol. 2015;67(10):1337–48.

    Article 
    PubMed 

    Google Scholar
     

  • Azzi J, Yin Q, Uehara M, Ohori S, Tang L, Cai Ok, et al. Focused supply of immunomodulators to lymph nodes. Cell Rep. 2016;15(6):1202–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansouri A, Abnous Ok, Alibolandi M, Taghdisi SM, Ramezani M. Focused supply of tacrolimus to T cells by pH-responsive aptamer-chitosan- poly(lactic-co-glycolic acid) nanocomplex. J Cell Physiol. 2019;234(10):18262–71.

    Article 
    PubMed 

    Google Scholar
     

  • Asselah T, Loureiro D, Boyer N, Mansouri A. Targets and future direct-acting antiviral approaches to realize hepatitis B virus remedy. Lancet Gastroenterol Hepatol. 2019;4(11):883–92.

    Article 
    PubMed 

    Google Scholar
     

  • Jesus S, Soares E, Costa J, Borchard G, Borges O. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based mostly nanoparticles. Int J Pharm. 2016;504(1–2):59–69.

    Article 
    PubMed 

    Google Scholar
     

  • Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and analysis of HBsAg polymeric nanoparticles as antigen supply carriers. Int J Biol Macromol. 2018;111:804–12.

    Article 
    PubMed 

    Google Scholar
     

  • Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and diminished hepatitis-B virus in humanized mannequin. Artif Cells Nanomed Biotechnol. 2018;46(8):2033–42.

    PubMed 

    Google Scholar
     

  • Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene supply: strategies for enchancment and functions. Adv Colloid Interface Sci. 2019;268:25–38.

    Article 
    PubMed 

    Google Scholar
     

  • Ndeboko B, Lemamy GJ, Nielsen PE, Cova L. Therapeutic potential of cell penetrating peptides (CPPs) and cationic polymers for persistent hepatitis B. Int J Mol Sci. 2015;16(12):28230–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayoub MM, Elantouny NG, El-Nahas HM, Ghazy FES. Injectable PLGA Adefovir microspheres; the way in which for long run remedy of persistent hepatitis-B. Eur J Pharm Sci. 2018;118:24–31.

    Article 
    PubMed 

    Google Scholar
     

  • Ayoub MM, Jasti B, Elantouny NG, Elnahas H, Ghazy FE. Comparative research of PLGA in-situ implant and nanoparticle formulations of entecavir; in-vitro and in-vivo analysis. J Drug Deliv Sci Technol. 2020;56:101585.

    Article 

    Google Scholar
     

  • Zhang C, Wang A, Wang H, Yan M, Liang R, He X, et al. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term remedy of persistent hepatitis-B: preparation and in vitro and in vivo analysis. Int J Pharm. 2019;560:27–34.

    Article 
    PubMed 

    Google Scholar
     

  • Hamdi M, Abdel-Bar HM, Elmowafy E, Al-Jamal KT, Awad GAS. An built-in vitamin E-coated polymer hybrid nanoplatform: a profitable choice for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect. PLoS ONE. 2020;15(1):e0227231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver illness. Nat Rev Dis Primers. 2015;1:15080.

    Article 
    PubMed 

    Google Scholar
     

  • Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD improvement and therapeutic methods. Nat Med. 2018;24(7):908–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang XJ, Malhi H. Nonalcoholic fatty liver illness. Ann Intern Med. 2018;169(9):65–80.


    Google Scholar
     

  • Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, et al. Metabolomic identification subtypes nonalcoholic steatohepatitis.  Gastroenterology. 2017;152(6):1449–61.

    Article 
    PubMed 

    Google Scholar
     

  • Cusi Ok. Position of weight problems and lipotoxicity within the improvement of nonalcoholic steatohepatitis: pathophysiology and scientific implications. Gastroenterology. 2012;142(4):711–25.

    Article 
    PubMed 

    Google Scholar
     

  • Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central function of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774–88.

    Article 
    PubMed 

    Google Scholar
     

  • Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi Ok, Rinella M, et al. The prognosis and administration of nonalcoholic fatty liver illness: observe steerage from the American Affiliation for the research of Liver Ailments. Hepatology. 2018;67(1):328–57.

    Article 
    PubMed 

    Google Scholar
     

  • Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral supply of silymarin and enhanced lipid-lowering impact in NAFLD. J Nanobiotechnol. 2018;16(1):64.

    Article 

    Google Scholar
     

  • Marcellin P, Kutala BK. Liver ailments: a significant, uncared for world public well being drawback requiring pressing actions and large-scale screening. Liver Int. 2018;38(Suppl 1):2–6.

    Article 
    PubMed 

    Google Scholar
     

  • Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Intestine. 2015;64(5):830–41.

    Article 
    PubMed 

    Google Scholar
     

  • Novo E, Parola M. Redox mechanisms in hepatic persistent wound therapeutic and fibrogenesis. Fibrogenesis Tissue Restore. 2008;1(1):5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novo E, Cannito S, Paternostro C, Bocca C, Miglietta A, Parola M. Mobile and molecular mechanisms in liver fibrogenesis. Arch Biochem Biophys. 2014;548:20–37.

    Article 
    PubMed 

    Google Scholar
     

  • Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and scientific points. Mol Features Med. 2019;65:37–55.

    Article 
    PubMed 

    Google Scholar
     

  • Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832(7):876–83.

    Article 
    PubMed 

    Google Scholar
     

  • Kang JH, Toita R, Murata M. Liver cell-targeted supply of therapeutic molecules. Crit Rev Biotechnol. 2016;36(1):132–43.

    Article 
    PubMed 

    Google Scholar
     

  • Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Environment friendly drug and gene supply to liver fibrosis: rationale, current advances, and views. Acta Pharm Sinica B. 2020;10(7):1279–93.

    Article 

    Google Scholar
     

  • Rohilla R, Garg T, Goyal AK, Rath G. Natural and polymeric approaches for liver-targeting drug supply: novel methods and their significance. Drug Deliv. 2016;23(5):1645–61.

    PubMed 

    Google Scholar
     

  • Rockey DC. Present and future anti-fibrotic therapies for persistent liver illness. Clin Liver Dis. 2008;12(4):939–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon YJ, Friedman SL, Lee YA. Antifibrotic therapies: the place are we now? Semin Liver Dis. 2016;36(1):87–98.

    Article 
    PubMed 

    Google Scholar
     

  • Latief U, Ahmad R. Natural treatments for liver fibrosis: a evaluate on the mode of motion of fifty herbs. J Tradit Complement Med. 2018;8(3):352–60.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Zhou C, Fu Y, Chen T, Liu X, Zhang Z, et al. Focused supply of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B. 2020;10(4):693–710.

    Article 
    PubMed 

    Google Scholar
     

  • Lin L, Gong H, Li R, Huang J, Cai M, Lan T, et al. Nanodrug with ROS and pH dual-sensitivity ameliorates liver fibrosis by way of multicellular regulation. Adv Sci (Weinh). 2020;7(7):1903138.

    Article 

    Google Scholar
     

  • Hu Q, Hu S, Fleming E, Lee JY, Luo Y. Chitosan-caseinate-dextran ternary advanced nanoparticles for potential oral supply of astaxanthin with considerably improved bioactivity. Int J Biol Macromol. 2020;151:747–56.

    Article 
    PubMed 

    Google Scholar
     

  • Lin TT, Gao DY, Liu YC, Sung YC, Wan DH, Liu JY, et al. Growth and characterization of sorafenib-loaded PLGA nanoparticles for the systemic remedy of liver fibrosis. J Managed Launch. 2016;221:62–70.

    Article 

    Google Scholar
     

  • Fan QQ, Zhang CL, Qiao JB, Cui PF, Xing L, Oh YK, et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis remedy. Biomaterials. 2020;230:119616.

    Article 
    PubMed 

    Google Scholar
     

  • Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, et al. Synergistic MicroRNA remedy in liver fibrotic rat utilizing MRI-Seen nanocarrier concentrating on hepatic stellate cells. Adv Sci (Weinh). 2019;6(5):1801809.

    Article 

    Google Scholar
     

  • Leber N, Kaps L, Aslam M, Schupp J, Brose A, Schäffel D, et al. SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. J Management Launch. 2017;248:10–23.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Z, Wang C, Zha Y, Hu W, Gao Z, Zang Y, et al. Corona-directed nucleic acid supply into hepatic stellate cells for liver fibrosis remedy. ACS Nano. 2015;9(3):2405–19.

    Article 
    PubMed 

    Google Scholar
     

  • Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.

    Article 
    PubMed 

    Google Scholar
     

  • Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao YM, El-Serag HB. Threat of hepatocellular most cancers in HCV sufferers handled with direct-acting antiviral brokers. Gastroenterology. 2017;153(4):996–1005.

    Article 
    PubMed 

    Google Scholar
     

  • Llovet JM, Bruix J. Systematic evaluate of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.

    Article 
    PubMed 

    Google Scholar
     

  • Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, et al. Nanomedicine as a putative method for energetic concentrating on of hepatocellular carcinoma. Semin Most cancers Biol. 2021;69:91–9.

    Article 
    PubMed 

    Google Scholar
     

  • Huang Y, Zhang W, Xu Y, Zhu S, Wu Y, Chen T, et al. Dynamic core crosslinked camptothecin prodrug micelles with discount sensitivity and boronic acid-mediated enhanced endocytosis: an clever tumor-targeted supply nanoplatform. Int J Pharm. 2020;580:119250.

    Article 
    PubMed 

    Google Scholar
     

  • Yang DH, Kim HJ, Park Ok, Kim JK, Chun HJ. Preparation of poly-l-lysine-based nanoparticles with pH-sensitive launch of curcumin for focused imaging and remedy of liver most cancers in vitro and in vivo. Drug Deliv. 2018;25(1):950–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang T, Du G, Cui Y, Yu R, Hua C, Tian W, et al. pH-sensitive doxorubicin-loaded polymeric nanocomplex based mostly on β-cyclodextrin for liver cancer-targeted remedy. Int J Nanomed. 2019;14:1997–2010.

    Article 

    Google Scholar
     

  • Yang D, Luo W, Wang J, Zheng M, Liao XH, Zhang N, et al. A novel managed launch formulation of the Pin1 inhibitor ATRA to enhance liver most cancers remedy by concurrently blocking a number of most cancers pathways. J Management Launch. 2018;269:405–22.

    Article 
    PubMed 

    Google Scholar
     

  • Gan H, Chen L, Sui X, Wu B, Zou S, Li A, et al. Enhanced supply of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for focused remedy of hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl. 2018;91:395–403.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Xia Y, Liu H, Xia J, Qian M, Zhang L, et al. Poly(lactobionamidoethyl methacrylate)-based amphiphiles with ultrasound-labile elements in manufacture of drug supply nanoparticulates for augmented cytotoxic efficacy to hepatocellular carcinoma. J Colloid Interface Sci. 2019;551:1–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yan T, Cheng J, Liu Z, Cheng F, Wei X, Huang Y, et al. Acid-sensitive polymeric vector concentrating on to hepatocarcinoma cells by way of glycyrrhetinic acid receptor-mediated endocytosis. Mater Sci Eng C Mater Biol Appl. 2018;87:32–40.

    Article 
    PubMed 

    Google Scholar
     

  • Guo H, Xu M, Cao Z, Li W, Chen L, Xie X, et al. Ultrasound-assisted mir-122-loaded polymeric nanodroplets for hepatocellular carcinoma gene remedy. Mol Pharm. 2020;17(2):541–53.

    PubMed 

    Google Scholar
     

  • Yang J, Zhang J, Liu Y, Shi Z, Han H, Li Q. Phenylboronic acid-modified polyamidoamine-mediated supply of brief GC wealthy DNA for hepatocarcinoma gene remedy. Biomater Sci. 2019;7(8):3348–58.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Zong ZM, Liu Q, Jiang SS, Zhang Q, Cen LQ, et al. A novel galactose-PEG-conjugated biodegradable copolymer is an environment friendly gene supply vector for immunotherapy of hepatocellular carcinoma. Biomaterials. 2018;184:20–30.

    Article 
    PubMed 

    Google Scholar
     

  • Wu B, Li A, Zhang Y, Liu X, Zhou S, Gan H, et al. Resistance of hepatocellular carcinoma to sorafenib will be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles. Knowledgeable Opin Drug Deliv. 2020;17(4):573–87.

    Article 
    PubMed 

    Google Scholar
     

  • Ning Q, Liu YF, Ye PJ, Gao P, Li ZP, Tang SY, et al. Supply of liver-specific miRNA-122 utilizing a focused macromolecular prodrug towards synergistic remedy for hepatocellular carcinoma. ACS Appl Mater Interfaces. 2019;11(11):10578–88.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng H, Wu Z, Wu C, Wang X, Liow SS, Li Z, et al. Overcoming STC2 mediated drug resistance via drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver most cancers cells. Mater Sci Eng C Mater Biol Appl. 2018;83:210–7.

    Article 
    PubMed 

    Google Scholar
     

  • O’Leary JG, Lepe R, Davis GL. Indications for liver transplantation. Gastroenterology. 2008;134(6):1764–76.

    Article 
    PubMed 

    Google Scholar
     

  • European Affiliation for the Research of the Liver. EASL scientific observe pointers: liver transplantation. J Hepatol. 2016;64(2):433–85.

    Article 

    Google Scholar
     

  • Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: scientific implications. Tissue Antigens. 2007;69(6):545–56.

    Article 
    PubMed 

    Google Scholar
     

  • Banff schema for grading. Liver allograft rejection: a global consensus doc. Hepatology. 1997;25(3):658–63.

    Article 

    Google Scholar
     

  • Halloran PF, Kreepala C, Einecke G, Loupy A, Sellarés J. Therapeutic approaches to organ transplantation. In: Li XC, Jevnikar AM, editors. Transplant immunology. Hoboken: Wiley; 2015.


    Google Scholar
     

  • Wang Y, Wang C, Fu S, Liu Q, Dou D, Lv H, et al. Preparation of Tacrolimus loaded micelles based mostly on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone). Int J Pharm. 2011;407(1–2):184–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Wang C, Wang Y, Luo F, Yan X, Qian Z. Micelles of methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) as a novel drug supply automobile for tacrolimus. J Biomed Nanotechnol. 2013;9(2):147–57.

    Article 
    PubMed 

    Google Scholar
     

  • Xu W, Ling P, Zhang T. Towards immunosuppressive results on liver transplantation in rat mannequin: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int J Pharm. 2014;460(1–2):173–80.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang D, Pan X, Wang S, Zhai Y, Guan J, Fu Q, et al. Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer as an oral high-performance supply service of Tacrolimus. Mol Pharm. 2015;12(7):2337–51.

    Article 
    PubMed 

    Google Scholar
     

  • Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, et al. Formulation and in vivo pharmacokinetic analysis of ethyl cellulose-coated sustained launch multiple-unit system of tacrolimus. Int J Biol Macromol. 2018;109:544–50.

    Article 
    PubMed 

    Google Scholar
     

  • Wang M, Solar J, Zhai Y, Lian H, Luo C, Li L, et al. Enteric polymer based mostly on pH-responsive aliphatic polycarbonate functionalized with vitamin E to facilitate oral supply of tacrolimus. Biomacromolecules. 2015;16(4):1179–90.

    Article 
    PubMed 

    Google Scholar
     

  • Mohammed M, Mansell H, Shoker A, Wasan KM, Wasan EK. Growth and in vitro characterization of chitosan-coated polymeric nanoparticles for oral supply and sustained launch of the immunosuppressant drug mycophenolate mofetil. Drug Dev Ind Pharm. 2019;45(1):76–87.

    Article 
    PubMed 

    Google Scholar
     

  • Hopf U, Ramadori G. Physiology and pathophysiology of the reticuloendothelial system of the liver (writer’s transl). Leber Magen Darm. 1980;10(5):277–83.

    PubMed 

    Google Scholar
     

  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and floor charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407–16.

    Article 
    PubMed 

    Google Scholar
     

  • Poon W, Zhang YN, Ouyang B, Kingston BR, Wu JLY, Wilhelm S, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–98.

    Article 
    PubMed 

    Google Scholar
     

  • Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as rising mechanisms of nanomaterial toxicity. Half Fibre Toxicol. 2012;9:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging brokers: concerns and caveats. Nanomedicine (Lond). 2008;3(5):703–17.

    Article 

    Google Scholar
     

  • Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into strong tumours. Nat Mater. 2020;19(5):566–75.

    Article 
    PubMed 

    Google Scholar
     

  • Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Immediately. 2012;7(1):53–65.

    Article 

    Google Scholar
     

  • Fan W, Zhang L, Li Y, Wu H. Current progress of crosslinking methods for polymeric micelles with enhanced drug supply in most cancers remedy. Curr Med Chem. 2019;26(13):2356–76.

    Article 
    PubMed 

    Google Scholar
     

  • Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical functions. Mater Sci Eng C Mater Biol Appl. 2021;119:111626.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao Ok, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The impact of floor cost on in vivo biodistribution of PEG-oligocholic acid based mostly micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574–81.

    Article 
    PubMed 

    Google Scholar
     

  • Srisa-Nga Ok, Mankhetkorn S, Okonogi S, Khonkarn R. Supply of superparamagnetic polymeric Micelles loaded with quercetin to Hepatocellular Carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.

    Article 
    PubMed 

    Google Scholar
     

  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of Controlling Drug Launch. Chem Rev. 2016;116(4):2602–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply